Critical exponents and equation of state of three-dimensional spin models

نویسندگان

  • M. Campostrini
  • E. Vicari
چکیده

Three-dimensional spin models of the Ising and XY universality classes are studied by a combination of hightemperature expansions and Monte Carlo simulations. Critical exponents are determined to very high precision. Scaling amplitude ratios are computed via the critical equation of state. Our results are compared with other theoretical computations and with experiments, with special emphasis on the λ transition of He.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-precision estimates of critical quantities by means of improved Hamiltonians

Three-dimensional spin models of the Ising and XY universality classes are studied by a combination of high-temperature expansions and Monte Carlo simulations applied to improved Hamiltonians. The critical exponents and the critical equation of state are determined to very high precision.

متن کامل

Spin and Isospin Asymmetry, Equation of State and Neutron Stars

In the present work, we have obtained the equation of state for neutron star matter considering the in uence of the ferromagnetic and antiferromagnetic spin state. We have also investigated the structure of neutron stars. According to our results, the spin asymmetry stiens the equation of state and leads to high mass for the neutron star.

متن کامل

Ordering Temperatures and Critical Exponents in Ising Spin Glasses.

We propose a numerical criterion which can be used to obtain accurate and reliable values of the ordering temperatures and critical exponents of spin glasses. Using this method we find a value of the ordering temperature for the ±J Ising spin glass in three dimensions which is definitely non-zero and in good agreement with previous estimates. We show that the critical exponents of three dimensi...

متن کامل

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

Three-dimensional calculations of the magnetic fields in a finite superconducting hollow cylinder in an applied axial magnetic field

In this study, a set of self-consistent coupled-integral equations for the local magnetic flux and current distributions in a finite superconducting hollow cylinder under an axial magnetic field has been directly derived by using the Biot-Savart law within the framework of the critical-state model. The equations were first solved numerically in the three-dimensional space before obtaining the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000